Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Lluís Garrido Ostermann ; [en] In recent years the industry of quadcopters has experimented a boost. The appearance of inexpensive drones has led to the growth of the recreational use of this vehicles, which opens the door to the creation of new applications and technologies. This thesis presents a vision-based autonomous control system for an AR.Drone 2.0. A tracking algorithm is developed using onboard vision systems without relying on additional external inputs. In particular, the tracking algorithm is the combination of a trained MobileNet-SSD object detector and a KCF tracker. The noise induced by the tracker is decreased with a Kalman filter. Furthermore, PID controllers are implemented for the motion control of the quadcopter, which process the output of the tracking algorithm to move the drone to the desired position. The final implementation was tested indoors and the system yields acceptable results.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A follow-me algorithm for AR.Drone using MobileNet-SSD and PID control



    Erscheinungsdatum :

    27.06.2018


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    H-Infinity Control for Pitch-Roll AR.Drone

    Prayitno, Agung / Indrawati, Veronica / Arron, Clark | BASE | 2016

    Freier Zugriff


    Waypoint Navigation of AR.Drone Quadrotor Using Fuzzy Logic Controller

    Indrawati, Veronica / Prayitno, Agung / Kusuma, Thomas Ardi | BASE | 2015

    Freier Zugriff

    Framework for autonomous onboard navigation with the AR.Drone

    Jimenez Lugo, Jacobo / Zell, Andreas | IEEE | 2013


    The Impact of DoS Attacks on the AR.Drone 2.0

    Vasconcelos, Gabriel / Carrijo, Gabriel / Miani, Rodrigo et al. | IEEE | 2016