Abstract This letter studies an ultra-reliable low latency communication problem focusing on a vehicular edge computing network in which vehicles either fetch and synthesize images recorded by surveillance cameras or acquire the synthesized image from an edge computing server. The notion of risk-sensitive in financial mathematics is leveraged to define a reliability measure, and the studied problem is formulated as a risk minimization problem for each vehicle’s end-to-end (E2E) task fetching and offloading delays. Specifically, by resorting to a joint utility and policy estimation-based learning algorithm, a distributed risk-sensitive solution for task fetching and offloading is proposed. Simulation results show that our proposed solution achieves performance improvements up to 40% variance reduction and steeper distribution tail of the E2E delay over an averaged-based baseline.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Risk-sensitive task fetching and offloading for vehicular edge computing



    Erscheinungsdatum :

    2019-01-01


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    A Collaborative Task Offloading Scheme in Vehicular Edge Computing

    Bute, Muhammad Saleh / Fan, Pingzhi / Liu, Gang et al. | IEEE | 2021


    A Belief-Based Task Offloading Algorithm in Vehicular Edge Computing

    Ko, Haneul / Kim, Joonwoo / Ryoo, Dongkyun et al. | IEEE | 2023




    Vehicular Task Offloading and Job Scheduling Method Based on Cloud-Edge Computing

    Sun, Yilong / Wu, Zhiyong / Meng, Ke et al. | IEEE | 2023