With the rapid development of vehicular networks, various applications that require high computation resources have emerged. To efficiently execute these applications, vehicular edge computing (VEC) can be employed. VEC offloads the computation tasks to the VEC node, i.e., the road side unit (RSU), which improves vehicular service and reduces energy consumption of the vehicle. However, communication environment is time-varying due to the movement of the vehicle, so that finding the optimal offloading parameters is still an open problem. Therefore, it is necessary to investigate an optimal offloading strategy for effective energy savings in energy-limited vehicles. In this paper, we consider the changes of communication environment due to various speeds of vehicles, which are not considered in previous studies. Then, we jointly optimize the offloading proportion and uplink/computation/downlink bit allocation of multiple vehicles, for the purpose of minimizing the total energy consumption of the vehicles under the delay constraint. Numerical results demonstrate that the proposed energy-efficient offloading strategy significantly reduces the total energy consumption.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Energy-Efficient Task Offloading for Vehicular Edge Computing: Joint Optimization of Offloading and Bit Allocation


    Beteiligte:
    Jang, Youngsu (Autor:in) / Na, Jinyeop (Autor:in) / Jeong, Seongah (Autor:in) / Kang, Joonhyuk (Autor:in)


    Erscheinungsdatum :

    2020-05-01


    Format / Umfang :

    156345 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Joint Offloading and Resource Allocation for Scalable Vehicular Edge Computing

    Wu, Wei / Wang, Qie / Wu, Xuanli et al. | IEEE | 2020


    A Collaborative Task Offloading Scheme in Vehicular Edge Computing

    Bute, Muhammad Saleh / Fan, Pingzhi / Liu, Gang et al. | IEEE | 2021


    Risk-sensitive task fetching and offloading for vehicular edge computing

    Batewela, S. (Sadeep) / Liu, C.-F. (Chen-Feng) / Bennis, M. (Mehdi) et al. | BASE | 2019

    Freier Zugriff

    A Belief-Based Task Offloading Algorithm in Vehicular Edge Computing

    Ko, Haneul / Kim, Joonwoo / Ryoo, Dongkyun et al. | IEEE | 2023