The harmonic properties concerning the fractional derivative of Riemann zeta function are presented through the computation of the double one-sided Fourier transform. In this paper, it is computed both analytically and numerically. The symmetry of this integral transform is shown and discussed through the investigation of real and imagine parts. In addition, the link between the fractional derivative of Riemann zeta function and wavelet analysis is introduced.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Harmonic symmetry of the Riemann zeta fractional derivative


    Beteiligte:
    Guariglia, Emanuel (Autor:in) / Sivasundaram, Seenith (Herausgeber:in)

    Kongress:

    ICNPAA 2018 WORLD CONGRESS: 12th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences ; 2018 ; Yerevan, Armenia


    Erschienen in:

    Erscheinungsdatum :

    04.12.2018


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A functional equation for the Riemann Zeta fractional derivative

    Guariglia, Emanuel / Silvestrov, Sergei | American Institute of Physics | 2017


    A functional equation for the Riemann zeta fractional derivative

    Guariglia, Emanuel / Silvestrov, Sergei | American Institute of Physics | 2017


    Identities for the Riemann zeta function

    Rubinstein, M. O. | British Library Online Contents | 2012


    On the divisor function and the Riemann zeta-function in short intervals

    Ivić, A. | British Library Online Contents | 2009


    Some Unusual Identities for Special Values of the Riemann Zeta Function

    Banks, W. D. | British Library Online Contents | 2001