In this paper a functional equation for the fractional derivative of the Riemann ζ function is presented. The fractional derivative of ζ is computed by a generalization of the Grünwald-Letnikov fractional operator, which satisfies the generalized Leibniz rule. It is applied to the asymmetric functional equation of ζ in order to obtain the result sought. Moreover, further properties of this fractional derivative are proposed and discussed.

    At the request of both authors and with the approval of the proceedings editor, article 020146 titled, “A functional equation for the Riemann Zeta fractional derivative,” is being retracted from the public record due to the fact that it is a duplication of article 020063 published in the same volume.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A functional equation for the Riemann Zeta fractional derivative


    Beteiligte:

    Kongress:

    ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences ; 2016 ; La Rochelle, France


    Erschienen in:

    Erscheinungsdatum :

    27.01.2017


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A functional equation for the Riemann zeta fractional derivative

    Guariglia, Emanuel / Silvestrov, Sergei | American Institute of Physics | 2017


    Harmonic symmetry of the Riemann zeta fractional derivative

    Guariglia, Emanuel | American Institute of Physics | 2018


    Identities for the Riemann zeta function

    Rubinstein, M. O. | British Library Online Contents | 2012


    Some Unusual Identities for Special Values of the Riemann Zeta Function

    Banks, W. D. | British Library Online Contents | 2001


    On the divisor function and the Riemann zeta-function in short intervals

    Ivić, A. | British Library Online Contents | 2009