Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High-dimensional Surrogate Modeling for Image Data with Nonlinear Dimension Reduction


    Beteiligte:

    Kongress:

    AIAA SCITECH 2024 Forum



    Erscheinungsdatum :

    01.01.2024




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Dimension Reduction for Efficient Surrogate Modeling in High-Dimensional Applications

    Kapusuzoglu, Berkcan / Guo, Yulin / Mahadevan, Sankaran et al. | TIBKAT | 2022


    Dimension Reduction for Efficient Surrogate Modeling in High-Dimensional Applications

    Kapusuzoglu, Berkcan / Guo, Yulin / Mahadevan, Sankaran et al. | AIAA | 2022


    Surrogate Modeling with High-Dimensional Input and Output

    Guo, Yulin / Mahadevan, Sankaran / Matsumoto, Shunsaku et al. | AIAA | 2021


    Gaussian Surrogate Dimension Reduction for Efficient Reliability-Based Design Optimization

    Clark, Daniel L. / Bae, Harok / Forster, Edwin E. | AIAA | 2020


    Gaussian Surrogate Dimension Reduction for Efficient Reliability-Based Design Optimization

    Clark, Daniel L. / Bae, Harok / Forster, Edwin E. | AIAA | 2020