The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear Differential Games-Based Impact-Angle-Constrained Guidance Law


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2015-02-05


    Format / Umfang :

    19 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Impact Angle Constraint Guidance Against Active Defense Target Based on Partial Differential Games

    Biao Xu / Jialuo Xu / Shuang Li et al. | DOAJ | 2024

    Freier Zugriff

    Nonlinear Impact Angle Constrained Guidance Law Design via the SDRE Method

    Dong, Wei / Li, Haiqing / Wang, Chunyan et al. | TIBKAT | 2022


    Nonlinear Impact Angle Constrained Guidance Law Design via the SDRE Method

    Dong, Wei / Li, Haiqing / Wang, Chunyan et al. | Springer Verlag | 2021


    Nonlinear Optimal Impact-Angle-Constrained Guidance with Large Initial Heading Error

    Li, Hongyan / Wang, Jiang / He, Shaoming et al. | AIAA | 2021