Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Safe Deep Reinforcement Learning for Autonomous Airborne Collision Avoidance Systems


    Beteiligte:

    Kongress:

    AIAA SCITECH 2022 Forum



    Erscheinungsdatum :

    01.01.2022




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Towards Safe Deep Reinforcement Learning for Autonomous Airborne Collision Avoidance Systems

    Panoutsakopoulos, Christos / Yuksek, Burak / Inalhan, Gokhan et al. | TIBKAT | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | TIBKAT | 2022


    Pedestrian Collision Avoidance Using Deep Reinforcement Learning

    Rafiei, Alireza / Fasakhodi, Amirhossein Oliaei / Hajati, Farshid | Springer Verlag | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | Springer Verlag | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | British Library Conference Proceedings | 2022