Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Validating Machine Learning-based Highly Automated Driving Functions by Diversity


    Weitere Titelangaben:

    Validierung von auf maschinellem Lernen basierenden hochautomatisierten Fahrfunktionen durch Diversität


    Beteiligte:
    De Candido, Oliver Thomas (Autor:in) / Utschick, Wolfgang (Akademische:r Betreuer:in) / Hand, Paul E.. (Gutachter:in) / Botsch, Michael (Gutachter:in) / Utschick, Wolfgang (Gutachter:in)

    Erscheinungsdatum :

    2023


    Format / Umfang :

    1 Online-Ressource


    Anmerkungen:


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Encouraging Validatable Features in Machine Learning-Based Highly Automated Driving Functions

    De Candido, Oliver / Koller, Michael / Utschick, Wolfgang | IEEE | 2023


    Highly immersive driving simulator for scenario based testing of automated driving functions

    Prokop, Günther / Tüschen, Thomas / Eisenköck, Norman et al. | Springer Verlag | 2022


    Highly immersive driving simulator for scenario based testing of automated driving functions

    Prokop, G. / Tüschen, T. / Eisenköck, N. et al. | British Library Conference Proceedings | 2022


    Validating Reliability of Automated Driving Functions on a Steerable VEhicle-in-the-Loop (VEL) Test Bench

    Han, Chenlei / Seiffer, Alexander / Orf, Stefan et al. | Springer Verlag | 2021


    Passing Control Between Driver and Highly Automated Driving Functions

    Maas, Niko / Kracht, Frédéric Etienne / Schüller, Mira et al. | Springer Verlag | 2017