Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Classification of Skateboarding Tricks by Means of Support Vector Machine: An Evaluation of Significant Time-Domain in Features



    Kongress:

    11th Conference on Engineering and Technology (MUCET)



    Erscheinungsdatum :

    01.01.2020


    Format / Umfang :

    8 pages



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch



    The Classification of Skateboarding Tricks by Means of the Integration of Transfer Learning and Machine Learning Models

    Shapiee, Muhammad Nur Aiman / Ibrahim, Muhammad Ar Rahim / Razman, Mohd Azraai Mohd et al. | British Library Conference Proceedings | 2020


    The Classification of Skateboarding Trick Manoeuvres: A Frequency-Domain Evaluation

    Ibrahim, Muhammad Ar Rahim / Shapiee, Muhammad Nur Aiman / Abdullah, Muhammad Amirul et al. | British Library Conference Proceedings | 2020


    The Classification of Wink-Based EEG Signals: The Identification of Significant Time-Domain Features

    Kumar, Jothi Letitchumy Mahendra / Rashid, Mamunur / Musa, Rabiu Muazu et al. | TIBKAT | 2021


    The Classification of Wink-Based EEG Signals: The Identification of Significant Time-Domain Features

    Mahendra Kumar, Jothi Letchumy / Rashid, Mamunur / Musa, Rabiu Muazu et al. | Springer Verlag | 2020


    Data classification with support vector machine and generalized support vector machine

    Qi, Xiaomin / Silvestrov, Sergei / Nazir, Talat | American Institute of Physics | 2017