Several classes of important engineering problems - in this case, problems exhibiting sharp thermal Gradients - have solution features spanning multiple spatial scales and, therefore, necessitate advanced hp finite element discretizations. Although hp-FEM is unavailable off-the-shelf in many predominant commercial analysis software packages, the authors herein propose a novel method to introduce these capabilities via a generalized FEM nonintrusively in a standard finite element analysis (FEA) platform. The methodology is demonstrated on two verification problems as well as a representative, industrial-scale problem. Numerical results show that the techniques utilized allow for accurate resolution of localized thermal features on structural-scale meshes without hp-adaptivity or the ability to account for complex and very localized loads in the FEA code itself. This methodology enables the user to take advantage of all the benefits of both hp-FEM discretizations and the appealing features of many available computer-aided engineering /FEA software packages to obtain optimal convergence for challenging multiscale problems.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An improved nonintrusive global - local approach for sharp thermal gradients in a standard FEA platform


    Additional title:

    Eine verbesserte nicht-intrusive globale-lokale Näherung für scharfe Temperaturgradienten in einer FEA-Standardplattform


    Contributors:
    Plews, J. (author) / Duarte, C.A. (author) / Eason, T. (author)


    Publication date :

    2012


    Size :

    24 Seiten, 20 Bilder, 5 Tabellen, 51 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English




    Nonintrusive shaft speed sensor

    Barkhoudarian, S. / Wyett, L. / Maram, J. | NTRS | 1985


    Nonintrusive pilot fatigue monitoring

    Dillard, Michael B. / Orhan, Umut / Letsu-Dake, Emmanuel | IEEE | 2016




    Nonintrusive Manufactured Solutions for Ablation

    Freno, Brian A. / Carnes, Brian / Matula, Neil R. | AIAA | 2021