This paper designs and fabricates a vibration isolation model for improving vibration isolation effectiveness of the vehicle seat under low excitation frequencies. The feature of the proposed system is to use two symmetric negative stiffness structures (NSS) in parallel to a positive stiffness structure. Here, theoretical analysis of the proposed system is clearly presented. Then, the design procedure is derived so that the resonance peak of frequency-response curve drifts to the left, the load support capacity of the system is maintained, the total size of the system is reduced for easy practical application and especially, the bending of the frequency-response curve is minimized. Next the dynamic equation of the proposed system is set up. Then, the harmonic balance (HB) method is employed to seek the characteristic of the motion transmissibility of the proposed system at the steady state for each of the excitation frequency. From this characteristic, the curves of the motion transmission are predicted according to the various values of the configurative parameters of the system. Then, the time responses to the sinusoidal, multi frequency and random excitations are also investigated by simulation and experiment. In addition, the isolation performance comparison between the system with NSS and system without NSS is realized. The simulation results reveal that the proposed system has larger frequency region of isolation than that of the system without NSS. The experimental results confirm also that with a random excitation mainly spreading from 0.1 to 10 Hz, the isolation performance of the system with NSS is greatly improved, where the RMS values of the mass displacement may be reduced to 67.2%, whereas the isolation performance of the system without NSS is bad. Besides, the stability of the steady-state response is also studied. Finally, some conclusions are given.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat


    Additional title:

    Schwingungsisolierung von Fahrzeugsitzen im Niederfrequenzbereich mittels einer Konstruktion mit negativer Steifigkeit


    Contributors:

    Published in:

    Journal of Sound and Vibration ; 330 , 26 ; 6311-6335


    Publication date :

    2011


    Size :

    25 Seiten, 31 Bilder, 6 Tabellen, 15 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English