A shape optimization methodology for reducing the initial shock pressure rise on the ground of a supersonic aircraft is presented. This methodology combines elements from the linearized aerodynamic theory, such as the Whitham F function, with elements from the nonlinear aerodynamic theory, such as the prediction of lift distribution by an Euler or a Navier-Stokes flow solver. It is applied to the optimization of two different airplane concepts developed by Reno Aeronautical and Lockheed Martin, respectively, for the Defense Advanced Research Projects Agency's Quiet Supersonic Platform program. For Reno Aeronautical's laminar-flow supersonic aircraft, the initial shock pressure rise on the ground is reduced by a factor close to 2, from 1.224 psf (58.605 N/m2) at a freestream Mach number of 1.5 to 0.671 psf (32.127 N/m exp 2)), while maintaining constant lift. For Lockheed Martin's point of departure aircraft, a tenfold reduction of the initial shock pressure rise on the ground is demonstrated, from 1.623 psf (77.71 N/m 2) at a freestream Mach number of 1.5 to 0.152 psf (7.278 N/m 2), also while maintaining constant lift.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Shape optimization methodology for reducing the sonic boom initial pressure rise


    Additional title:

    Verfahren zur Minimierung der Druckanstiegsgeschwindigkeit beim Überschallknall durch Optimierung des umströmten Profils


    Contributors:

    Published in:

    AIAA Journal (online) ; 45 , 5 ; 1007-1018


    Publication date :

    2007


    Size :

    12 Seiten, 16 Bilder, 2 Tabellen, 28 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English




    Shape Optimization Methodology for Reducing the Sonic Boom Initial Pressure Rise

    Charbel Farhat / Kurt Maute / Brian Argrow et al. | AIAA | 2007


    A shape optimization methodology for reducing the sonic boom initial pressure rise

    Farhat, C. / Maute, K. / Argrow, B. et al. | AIAA | 2002



    Optimum nose shape for reducing tunnel sonic boom

    Iida, M. / Matsumura, T. / Nakatani, K. et al. | British Library Conference Proceedings | 1996