This paper describes an integrated structural optimization procedure using a multilevel decomposition technique and a domain mapping contour that can represent the production parameter region. At the upper level, the structural responses are represented in terms of global quantities, i.e. stiffness, stresses and weight. At the lower level, the structural responses are represented in terms of local quantities, i.e. the intermediate parameters or the detailed dimensions based on the production parameter region. This technique was applied to develop the aluminium vehicle structure. The cross-sectional characteristics and joint stiffness of the vehicle structure are calculated from the vehicle structure model which is composed of shell-beam-spring elements. In comparison with the base model (steel structure), the bending stiffness and torsional stiffness of the developed aluminium vehicle structure increase by around 45 and 35 per cent respectively, and the weight reduction is around 30 per cent. The manufactured structure is also presented.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite




    A structural optimization design for an aluminum-intensive vehicle

    Lee, Dong-Chan / Lee, Jeong-Ick | SAGE Publications | 2003


    A structural optimization design for an aluminium-intensive vehicle

    Lee,D.C. / Lee,J.I. / Seomoon Technologies,KR et al. | Automotive engineering | 2003


    Aluminum Intensive Vehicle Crashworthiness Design Approach

    Barbat, S. D. / Mahmood, H. F. / Prasad, P. P. et al. | British Library Conference Proceedings | 1997