One of the challenges of analyzing vehicular electrical systems is the co-dependence of the electrical system and the propulsion system. Even in the traditional vehicles where the electrical power budget is very low, the electrical system analysis for macro power utilization over a drive cycle requires knowledge of the generator shaft rpm profile during the drive cycle. This co-dependence increases as the electrical power budget increases, and the integration of the two systems becomes complete when hybridization is chosen. Last year the authors presented a paper entitled 'Dual Voltage Electrical System Simulations'. That paper established validation for a suite of electrical component models and demonstrated the ability of predict system performance both on a macro power flow (entire drive cycle) level and a detailed transient-event level. The techniques were applicable to 12 V, 42 V, dual voltage, and/or elevated voltage systems. The weakness of applying those electrical system analyses to real vehicles on drive cycles has already been noted. The required generator shaft rpm profile can only come from an analysis of the propulsion system. ADVISOR (Advanced Vehicle Simulator) is a well established programm form NREL (National Renewable Energy Laboratory) which analyzes the propulsion systems of both traditional and hybrid vehicles at the macro power flow level. As such, ADVISOR can provide the missing information required for electrical analyses. Likewise, ADVISOR could benefit from more detailed information concerning the load the electrical system places onto the propulsion system. If this information transfer is done in a co-simulation environment, all of the necessary information can be passed bi-directionally between the propulsion system and the electrical system. This paper details the development of a co-simulation environment between ADVISOR (based in MATLAB/SIMUINK) and Delphi Automotive's electrical system analysis in SABER. The end goal of this work is a full integration of electrical analysis into the ADVISOR structure which is transparent to the end user. This paper will demonstrate the ability to co-simulate the propulsion and electrical systems for traditional vehicles. Various load models will represent the power requirements of hardware. The paper will also provide a roadmap for extensions of this work into the hybrid vehicle realm.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Co-simulation of electrical and propulsion systems


    Additional title:

    Gemeinsame Simulation von elektrischen Systemen und Antriebssystemen


    Contributors:


    Publication date :

    2001


    Size :

    10 Seiten, 15 Bilder, 3 Tabellen, 4 Quellen




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Co-Simulation of Electrical and Propulsion Systems

    MacBain, John A. / Conover, Joseph J. / Johnson, Valerie H. | SAE Technical Papers | 2001


    2001-01-2533 Co-Simulation of Electrical and Propulsion Systems

    MacBain, J. A. / Conover, J. J. / Johnson, V. H. et al. | British Library Conference Proceedings | 2001


    Electrical propulsion

    Avril, M. | Engineering Index Backfile | 1933


    Advanced integrated electrical marine propulsion systems

    McFadden, R.H. / Trewman, H.C. | Tema Archive | 1985