This paper describesHorrell, C. a developmentSeifert, A.programDayan, I. taking small scale Aerodynamic laboratory experimental technology to full-scale road tests. The fuelGrossmann, J. saving conceptSmith, A. is based on attaching a 135 mm radius, quarter circle cross-section device, to the rear-side of truck-trailers. A full-scale conceptual prototype was designed and characterized by TAU and adopted as a full-scale adjustable and cost-effective prototype by ATDynamics. Bench-top tests at TAU validated the performance of the prototype as sufficient to warrant full-scale test success. Based on the bench-top tests it was decided that full scale inlet pressures of 3–6 psi at flow rates of 1–1.5 L/s per actuator are required. The full-scale prototype device comprised of some 100 suction and oscillatory blowing (SaOB) actuators’ array with a common compressed air supply. A positive displacement pump operated by a gasoline engine supplied the compressed air. As part of an ongoing ATD research project, a series of road tests were performed at the Goodyear Proving Ground, San Angelo, TX. Two identical trucks were tested. One truck-trailer was standard, while the other was equipped with the TAU-ATD device. Gauges located just downstream of the pump and at 5 locations along the supply ducts measured the supply pressures. Portable sensors measured the device suction pressure and pulsed blowing frequency. It was found that the pressure drop in the supply ducts was 10–15 %. However, additional 35 % pressure drop existed in the flexible tubes between the ducts and SaOB actuators. Out of the 81 possible configurations, determined by a 3 by 3 parameter space, 5 configurations were actually tested with valid results. One configuration, measured twice at a driving speed of 65 MPH, provided 5 % increase in fuel economy (not counting the input pump energy). This translates to a 1.75 L/100 km savings or 1 L/100 km taking into account the flow power invested. This improvement was obtained with inlet pressure lower than 4 psi, marginal according to all previous tunnel and bench-top tests. Furthermore, it is still open how close to optimal is this device configuration. With significantly reduced pressure losses, resulting in 5–6 psi inlet pressure at 15 % the current required input energy it is expected that 6–9 % net fuel saving would be obtainable in future road tests, potentially leading to the most compact commercial product to date.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Heavy Trucks Fuel Savings Using the SaOB Actuator


    Additional title:

    Lect.Notes in Applied (formerly:Lect.Notes Appl.Mechan.)


    Contributors:
    Dillmann, Andreas (editor) / Orellano, Alexander (editor) / Seifert, A. (author) / Dayan, I. (author) / Horrell, C. (author) / Grossmann, J. (author) / Smith, A. (author)

    Conference:

    International Conference on Engineering Conferences International ; 2010 ; Potsdam, Germany September 12, 2010 - September 17, 2010



    Publication date :

    2015-08-20


    Size :

    14 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Heavy Trucks Fuel Savings Using the SaOB Actuator

    Seifert, A. / Dayan, I. / Horrell, C. et al. | British Library Conference Proceedings | 2016


    Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

    Kailas, Aravind / McAuliffe, Brian / Surcel, Marius-Dorin et al. | SAE Technical Papers | 2018


    Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

    McAuliffe, Brian / Lammert, Michael / Lu, Xiao-Yun et al. | British Library Conference Proceedings | 2018


    Hydrogen as Fuel for Heavy-Duty Trucks

    Kolbeck, Andreas / Warnecke, Wolfgang / Wilbrand, Karsten et al. | TIBKAT | 2020


    Dual-Fuel Engines for Heavy Diesel Trucks

    Campbell, K. / International Association for Natural Gas Vehicles / European Natural Gas Vehicle Association | British Library Conference Proceedings | 1998