The large workspace of cable-driven parallel robots is one of their key benefits. Experiments have shown that in practice the reachable workspace is often smaller than the theoretically predicted one. To improve the workspace computation, a new forward kinematic code, which considers the previously neglected effects of cable sagging and pulleys, is introduced. For an exemplary robot with eight cables, the new forward kinematic predicts a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$18.5\%$$\end{document} smaller workspace and a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$27.8\%$$\end{document} lower platform stiffness than the standard geometric model.

    The findings of this work show the importance of considering the effects of cable sagging and pulleys in the workspace computation and kinematic codes, especially for large cable-driven parallel robots.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Forward Kinematic Code for Cable-Driven Parallel Robots Considering Cable Sagging and Pulleys


    Additional title:

    Springer Proceedings in Advanced Robotics


    Contributors:

    Conference:

    International Symposium on Advances in Robot Kinematics ; 2020 ; Ljubljana, Slovenia December 06, 2020 - December 10, 2020



    Publication date :

    2020-07-18


    Size :

    8 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    FEM-Based Dynamic Model for Cable-Driven Parallel Robots with Elasticity and Sagging

    Moussa, Karim / Coevoet, Eulalie / Duriez, Christian et al. | Springer Verlag | 2023




    On the Forward Kinematics of Cable-Driven Parallel Robots

    Pott, Andreas / Schmidt, Valentin | BASE | 2015

    Free access