In this study, a two-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine was proposed and researched to achieve aggressive engine downsizing and downspeeding. Compared to loop or cross scavenged two-stroke engines, the BUSDIG engine can achieve excellent scavenging performance and be operated with higher boost pressure as well as the absence of air and fuel short-circuiting. As a fundamental engine geometric parameter, the bore/stroke (B/S) ratio would directly affect the scavenging process in the uniflow scavenged two-stroke engine. Three-dimensional computational fluid dynamics simulations were used to investigate the scavenging process in the BUSDIG engine with different B/S ratios. Four B/S ratios of 0.66, 0.8, 1, and 1.3 were analyzed. The results indicate that a bigger B/S ratio leads to deteriorated swirl flow motion but better delivery ratio, scavenging efficiency, and charging efficiency. In order to fulfil the potential of the BUSDIG engine with different B/S ratios, two key scavenge port angles, i.e. axis inclination angle (AIA) and swirl orientation angle (SOA), were varied from the baseline design (AIA = 90°, SOA = 20°) to study their effects on the scavenging process for each B/S ratio design. Overall, a larger AIA leads to lower swirl ratio (SR) but achieves better scavenge performance, which is crucial for a large B/S ratio design. A small SOA design leads to noticeably lower SR but superior scavenging performances for a small B/S ratio design. An intermediate SOA, e.g. 10 and 20°, is preferred to improve the scavenging for a large B/S ratio design.


    Access

    Download


    Export, share and cite



    Title :

    Analysis of the effect of bore/stroke ratio and scavenge port angles on the scavenging process in a two-stroke boosted uniflow scavenged direct injection gasoline engine


    Contributors:
    Wang, Xinyan (author) / Ma, Jun (author) / Zhao, Hua (author)


    Publication date :

    2018-11-01


    Size :

    16 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English