An accurate thrust model is extremely important for the navigation and space mission of solar sails. The thrust is deeply affected by the deformation of the highly flexible structure. Thus, in this paper, the exact thrust models for two-point and infinite-point-connected sails are presented by calculating the static deformations for the sail support beam structure with geometrical nonlinearity based on the assumption that the deformation of the sail film coincides with the support beam. And the film is merely regarded as the structure that transfers the solar radiation pressure force to the support beam. The nonlinear finite element model of the support beam with the Von-Karman’s nonlinear strain–displacement relationships is obtained. Then the Newton iteration method is used to calculate the large deformation of the sail structure. The thrust-modification methods are proposed for the two-connected sail. The deformation of the two-point-connected sail is larger than the infinite-point-connected sail, and the thrust loss of the two-point-connected sail is larger than the infinite-point-connected sail by nonlinear static calculations. Some suggestions are given based on the calculation results and relevant analysis. The thrust model should be verified and modified by in-flight data in the future.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Nonlinear static analysis-based thrust for solar sail


    Contributors:
    Liu, Jiafu (author) / Cui, Naigang (author) / Shen, Fan (author) / Rong, Siyuan (author)


    Publication date :

    2015-01-01


    Size :

    14 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Realistic Solar Sail Thrust

    Campbell, Bruce A. / Thomas, Stephanie J. | Springer Verlag | 2014