Radial turbines used in turbochargers and micro-turbines are subjected to high inlet temperature. This creates high thermal stress in the turbines, and possible creep of turbine inducer blades, and can reduce turbines’ reliability. With the ever-stringent engine emission regulations and the continuous drive for engine power density, turbine inlet temperature is significantly increased recently and the risk of thermo-mechanical failure of turbine rotor is heightened. To solve this problem, an innovative turbine cooling method is proposed by injecting a small amount of compressor or intercooler discharge air onto the upper backdisc region of turbine rotor to cool the disc and the inducer blades. A conjugate heat transfer simulation was carried out to investigate the effects of this cooling method with a turbocharger turbine. Flow conditions and geometric configurations were investigated for their influences on the cooling effectiveness of the method. The results show that using the compressor discharger air after intercooler with only 0.5–2.0% of turbine mass flow, the averaged cooling efficiency of the turbine backdisc is promoted by 23–43%; only four to six jets may be needed to cool the entire backdisc; and turbine efficiency is reduced by less than 1% point.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Conjugate heat transfer study of backdisc cooling of a radial turbine


    Contributors:
    Chao, MA (author) / Kangbo, LU (author) / Wenjiao, LI (author)


    Publication date :

    2021-02-01


    Size :

    13 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Conjugate Heat Transfer Study of Innovative Pin-Fin Cooling Configurations

    Hossain, Mohammad Arif / Asar, Munevver E. / Ameri, Ali et al. | AIAA | 2020


    Conjugate Heat Transfer Study of Innovative Pin-Fin Cooling Configuration

    Hossain, Mohammad A. / Ameri, Ali / Bons, Jeffrey | AIAA | 2021


    CONJUGATE HEAT TRANSFER STUDY OF INNOVATIVE PIN-FIN COOLING Configurations

    Hossain, Mohammad Arif / Asar, Munevver E. / Ameri, Ali et al. | TIBKAT | 2020