A H2/O2 electro-chemical hybrid thruster with a novel design for efficient coupling of hydrogen–oxygen detonation combustion and plasma acceleration is constructed and tested. The comprehensive effects of various parameters, such as the delay time, the background pressure, the capacitance, the external magnetic field, and the propellant mass flow rate, on the performance of the thruster have been explored in single-pulse mode. Several strategies for enhancing the efficiency have been proposed. It is found that, by adding an external magnetic field and decreasing the storage capacitor under the low pressure of 30 Pa and higher single-pulse gas intake at appropriate delay time, the average thrust and efficiency can be enhanced up to 73.2 mN and 15.58%, respectively. In addition, the maximal specific impulse of 676 s is also achieved. The results strongly indicate the great potential of the proposed electro-chemical hybrid thruster in achieving large thrust and high-level specific impulse.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design and performance evaluation of a novel H2/O2 electro-chemical hybrid thruster


    Contributors:


    Publication date :

    2023-09-01


    Size :

    8 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Extended-performance thruster technology evaluation

    BEATTIE, J. / POESCHEL, R. / BECHTEL, R. | AIAA | 1978


    Evaluation of side thruster performance

    Norrby, R.Å. | IOS Press | 1974



    THRUSTER-THRUSTER INTERACTION FOR MANOEUVRABILITY EVALUATION

    Reinders, S. / Grimmelius, H. T. / Ligtelijn, J. T. et al. | British Library Conference Proceedings | 2006


    Design Optimization and Performance Evaluation of A Monopropellant Satellite Thruster

    Nichith, Chandrasekaran / P, Pradeep Kumar / Sharan, Sharad et al. | AIAA | 2016