A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition. Finally, the coupling of CFD and multi-zone Stochastic Reactor Model (SRM) was demonstrated to show improvement in CO and uHC emissions prediction.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model


    Additional title:

    Sae Technical Papers


    Contributors:
    Bhave, Amit (author) / Bae, Choongsik (author) / Su, Haiyun (author) / Cao, Li (author) / Kraft, Markus (author) / Kook, Sanghoon (author) / Mosbach, Sebastian (author)

    Conference:

    SAE World Congress & Exhibition ; 2008



    Publication date :

    2008-04-14




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English





    Influence of injection timing and piston bowl geometry on PCCI combustion and emissions

    Cao,L. / Bhave,A. / Su,H. et al. | Automotive engineering | 2009


    Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

    Bhave, Amit / Dris, Antonis / Su, Haiyun et al. | SAE Technical Papers | 2009


    Effects of Injection Pressure, Timing and EGR on Combustion and Emissions Characteristics of Diesel PCCI Engine

    Tomita, Eiji / Kawahara, Nobuyuki / Kiplimo, Robert et al. | SAE Technical Papers | 2011


    Noise and Emissions Reduction by Second Injection in Diesel PCCI Combustion with Split Injection

    Kuzuyama, Hiroshi / Taki, Masahiro / Ueda, Reiko et al. | SAE Technical Papers | 2014