Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOX emissions would allow to eliminate the NOX sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric oxide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbulence induced by fuel spray and enhanced by in-cylinder bulk motion. The effectiveness of the new model has been tested with data acquired during an extensive experimental campaign during which a 2.0l 4 cylinders Diesel engine, whose after-treatment system allows to fulfil the EU6 legislation limits, has been operated on the overall engine map. It is shown that, comparing measured and estimated NOX on a wide range of engine settings, the improved model is quite effective in capturing the effect of injection timing on engine-out NOX emissions: the average error between measured and estimated NOX is reduced of about 10% while the correlation coefficient is increased from 0.86 to 0.97.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Improvement of the Control-Oriented Model for the Engine-Out NOX Estimation Based on In-Cylinder Pressure Measurement


    Additional title:

    Sae Technical Papers



    Conference:

    13th International Conference on Engines & Vehicles ; 2017



    Publication date :

    2017-09-04




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    A Model for Crank-Angle-Resolved Engine Cylinder Pressure Estimation

    Jacoby, Andres / Sangeorzan, Brian / Llamocca, Daniel et al. | SAE Technical Papers | 2018


    An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

    Liu, F. / Amaratunga, G.A.J. / Collings, N. et al. | British Library Conference Proceedings | 2012


    An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

    Soliman, Ahmed / Liu, Feilong / Amaratunga, Gehan A. J. et al. | SAE Technical Papers | 2012