Upcoming, stricter diesel exhaust emissions standards will likely require aftertreatment architectures with multiple diesel exhaust fluid (DEF) introduction locations. Managing NH3 slip with technologies such as an ammonia slip catalyst (ASC) will continue to be critical in these future aftertreatment systems. In this study, we evaluate the impact of SO2 exposure on a state-of-the-art commercially available ASC. SO2 is co-fed at 0.5 or 3 ppmv to either approximate or accelerate a real-world exhaust SO2 impact. ASC performance during sulfur co-feeding is measured under a wide variety of simulated real-world conditions. Results indicate that the loss of NO conversion during SCR is dependent on the cumulative SO2 exposure, regardless of the inlet SO2 concentration. Meanwhile, N2O formation under SCR conditions is nonlinearly affected by SO2 exposure, with formation increasing during 0.5 ppmv SO2 exposure but decreasing in the presence of 3 ppmv SO2. TPO experiments reveal the formation of ammonium sulfate species, but only after prolonged SO2 exposure at 0.5ppmv or accelerated SO2 exposure at 3 ppmv. Reactivation at 550°C is sufficient to recover ASC reactivity following multiple SO2 exposure tests in all cases. These findings are especially relevant for the development of diesel exhaust aftertreatment accelerated aging protocols.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Laboratory sulfation of an ammonia slip catalyst with a real-world SO2 concentration


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    WCX SAE World Congress Experience ; 2023



    Publication date :

    2023-04-11




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    AMMONIA SLIP CATALYST

    FEDEJKO DZHOZEF MAJKL / DOURA KEVIN / VAJGERT ERIKH KONLAN et al. | European Patent Office | 2018

    Free access

    Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst

    Georgiadis, Evangelos / Hagen, Juergen / Uchiyama, Ken et al. | SAE Technical Papers | 2017


    Impact of Sulfur-Oxides on the Ammonia Slip Catalyst Performance

    Yezerets, Aleksey / Kumar, Ashok / Kamasamudram, Krishna et al. | SAE Technical Papers | 2014


    Sulfation in lead-acid batteries

    Catherino, Henry A. | Online Contents | 2004


    Detailed Mechanism of S Poisoning and De-Sulfation Treatment of Cu-SCR Catalyst

    Nagata, Makoto / Matsubayashi, Nobuyuki / Ando, Ryuji et al. | SAE Technical Papers | 2017