In many vibration isolation problems, translational motion has been regarded as a major contributor to the energy transmitted from a source to a receiver. However, the rotational components of isolation paths must be incorporated as the frequency range of interest increases. This article focuses on the flexural motion of an elastomeric isolator but the longitudinal motion is also considered. In this study, the isolator is modeled using the Timoshenko beam theory (flexural motion) and the wave equation (longitudinal motion), and linear, time-invariant system assumption is made throughout this study. Two different frequency response characteristics of an elastomeric isolator are predicted by the Timoshenko beam theory and are compared with its subsets. A rigid body is employed for the source and the receiver is modeled using two alternate formulations: an infinite beam and then a finite beam. Power transmission efficiency concept is employed to quantify the isolation achieved. Further, vibration power components are also examined. The roles of isolator parameters such as the static stiffness ratios, shape factors and material properties are investigated.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Vibration Power Transmission Through Multi-Dimensional Isolation Paths Over High Frequencies


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    SAE 2001 Noise & Vibration Conference & Exposition ; 2001



    Publication date :

    2001-04-30




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English