The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered.Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.Furthermore, the duct wall temperature influence is investigated in order to preliminary explore the needs in terms of duct thermal management.The impact of the above-mentioned parameters on combustion and emissions formation processes is assessed, highlighting the soot mitigation mechanisms enabled by DFI operation.The optimized duct design led to a strong soot reduction for most of the operating conditions tested, thus confirming the robustness of the proposed geometry. This preliminary understanding step via numerical simulation of DFI calibration requirements paves the way to future studies on duct-equipped engine applications.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling


    Additional title:

    Sae Technical Papers



    Conference:

    15th International Conference on Engines & Vehicles ; 2021



    Publication date :

    2021-09-05




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling

    Yraguen, Boni F. / Genzale, Caroline / Mueller, Charles J. et al. | SAE Technical Papers | 2020


    Ducted Fuel Injection: A Numerical Soot-Targeted Duct Geometry Optimization

    Vassallo, Alberto / Bianco, Andrea / Piano, Andrea et al. | SAE Technical Papers | 2021


    Investigation of Ducted Fuel Injection Implementation in a Retrofitted Light-Duty Diesel Engine through Numerical Simulation

    Vassallo, Alberto Lorenzo / Piano, Andrea / Segatori, Cristiano et al. | SAE Technical Papers | 2022


    Load variation using Ducted Fuel Injection - DFI, with different compression ratio in IC engine

    Rufino, Caio / Castejon Garcia, Ezio / Jairo Dias, Fábio et al. | SAE Technical Papers | 2023


    DUCTED PROPELLER FOR A VESSEL

    ANDERSEN STEINAR / ENGEN BJARNE | European Patent Office | 2021

    Free access