The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model. In comparison to the traditional electrical heating strategies to brutally heat massive area of entire turbine blades, a novel heating-coating hybrid strategy, i.e., combining a leading-edge (LE) heating element to cover the first 30% of the chord length (C) along with using SLIPS to coat entire blade surface, was found to be able to keep the entire blade surface completely free of ice, but with only an approximately 30% of the required energy consumption. The readily bouncing of the water droplets upon impinging onto the durable SLIPS and the much lower ice adhesion strength/capillary force over the SLIPS coated surface are believed to be the reasons to lead the better anti-/de-icing performance of the heating-coating hybrid strategy to prevent ice accretion/formation over the surfaces of the wind turbine blades.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation


    Additional title:

    Sae Technical Papers


    Contributors:
    Hu, Hui (author) / Gao, Linyue (author) / Ma, Liqun (author) / Liu, Yang (author)

    Conference:

    International Conference on Icing of Aircraft, Engines, and Structures ; 2019



    Publication date :

    2019-06-10




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    An Experimental Study on Icing Physics for Wind Turbine Icing Mitigation

    Guo, Hao / Zhang, Kai / Waldman, Rye M. et al. | AIAA | 2017


    Wind Turbine Icing and De-Icing

    Fortin, G. / Perron, J. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2009


    Wind Turbine Icing and De-Icing

    Fortin, Guy / Perron, Jean | AIAA | 2009



    Icing Simulation of Wind Turbine Blades

    Hochart, Clement / Fortin, Guy / Perron, Jean et al. | AIAA | 2007