Performance and extended component life are key requirements of propulsion for reusable launch craft (the space shuttle). Performance of the engine and vehicle require engines with high expansion ratio nozzles in compact sizes. The combination of thrust, specific impulse, and engine envelope required for the space shuttle can be achieved with a 3000-psia chamber pressure rocket engine. Pumping the propellants to high pressures requires high turbopump horsepower, dictating a staged combustion rocket engine cycle to eliminate the thrust performance loss associated with propellants that are used to drive the turbopumps. High energy density engines have much higher heat fluxes, turbomachinery speeds and mechanical stress than prior generations of rocket engines requiring more sophisticated design methods and mechanical configuration to meet the performance objectives. The reuse requirements place new restrictions on the design of rocket engines, particularly in the hot section areas where low cycle fatigue (LCF) and material creep properties determine life and cyclic limits. Design procedures and criteria that are being used for the design of Pratt & Whitney Aircraft's reusable shuttle rocket engine are based on those that have been used successfully for the design of commercial and military turbojet engines. This paper discusses significant components and features of design that give lightweight highly stressed parts extended component life.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    High Chamber Pressure Reusable Rocket Engine Technology


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    National Aeronautic and Space Engineering and Manufacturing Meeting ; 1970



    Publication date :

    1970-02-01




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Design and Analysis for Reusable Liquid Rocket Engine Chamber

    Chen, Tao / Yang, Jinhui / Jin, Ping et al. | AIAA | 2013


    Key technology for reusable rocket engine turbopump

    Okayasu, A. | Online Contents | 2002



    Reusable Rocket Engine: Firing Tests and Lifetime Analysis of Combustion Chamber

    Kimura, Toshiya / Hashimoto, Tomoyuki / Sato, Masaki et al. | AIAA | 2016


    The reusable sounding rocket vehicle: a reusable rocket technology demonstrator

    Sved, J. / Hannigan, R. J. / Skatteboe, R. et al. | British Library Conference Proceedings | 1994