Thin-walled structures have been widely used in automobile body design because of its good lightweight and superior mechanical properties. For the energy-absorbing box of the automobile, it is necessary to consider its working conditions under the axial and oblique impact. In this paper, a novel hierarchical honeycomb is proposed and used as filler for thin-walled structures. Meanwhile, the crashworthiness performances of the conventional honeycomb-filled and the hierarchical honeycomb-filled thin-walled structures under different impact conditions are systematically studied. The results indicate the energy absorption of the hierarchical honeycomb-filled thin-walled structure is higher than that of the conventional honeycomb-filled thin-walled structure, and the impact angle has significant effects on the energy absorption performance of the hierarchical honeycomb-filled structure. Specifically, the energy absorption of the hierarchical honeycomb-filled structure decreases as the impact angle increases. Lastly, multi-objective optimizations of the hierarchical honeycomb-filled structure are conducted, which is based on the RBF neural networks technique and MOPSO to maximize SEA and minimum PCF under the multi-angle oblique impact. The optimal parameter matching can improve the performance of the hierarchical honeycomb-filled structure in energy absorption. These findings can provide valuable guidelines for the design of filler structures under multiple loading angles.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Crashworthiness Design of Hierarchical Honeycomb-Filled Structures under Multiple Loading Angles


    Additional title:

    Sae Technical Papers


    Contributors:
    Ma, Chao (author) / Xu, Xiang (author) / Gao, Yunkai (author) / Liu, Zhe (author)

    Conference:

    WCX SAE World Congress Experience ; 2020



    Publication date :

    2020-04-14




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Crashworthiness Design of Hierarchical Honeycomb-Filled Structures under Multiple Loading Angles

    Gao, Yunkai / Liu, Zhe / Xu, Xiang et al. | British Library Conference Proceedings | 2020


    Finite element analysis of foam-filled honeycomb structures under impact loading and crashworthiness design

    Mozafari, Hozhabr / Khatami, Soroush / Molatefi, Habibollah et al. | Taylor & Francis Verlag | 2016


    Crashworthiness optimization of bio-inspired hierarchical honeycomb under axial loading

    Yin, Hanfeng / Wang, Xingzhou / Wen, Guilin et al. | Taylor & Francis Verlag | 2021


    Crashworthiness analysis and multi-objective optimization for honeycomb structures under oblique impact loading

    Ma, Fangwu / Liang, Hongyu / Pu, Yongfeng et al. | Taylor & Francis Verlag | 2022


    Crushing behavior and crashworthiness optimization of multi-cell square tubes under multiple loading angles

    Li, Zhichao / Rakheja, Subhash / Shangguan, Wen-Bin | SAGE Publications | 2020