Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited. This work proposes the combination of OME1 and HVO as an alternative to fossil diesel, to achieve noticeable soot emission reductions while compensating for the different properties of the first fuel.The aim of this work is to provide insight into the combustion characteristics of blends of these two fuels. For this purpose, experimental and numerical studies are combined. In this context, n-dodecane is proposed as a surrogate for HVO simulation based on the high similarities experimentally observed between both fuels. Then, a compact kinetic mechanism is developed and validated, combining individual OME1 and n-dodecane mechanisms. Results confirm that the numerical approach followed was able to capture the experimental behavior of these blends in terms of heat release rate, in-cylinder pressure and soot formation. An increase of the OME1 content in the blend greatly influences the combustion process. The ignition delay, as well as the premixed combustion phase peak, increase with the OME1 percentage in the blend. However, HVO helps on limiting this effect while remarkable soot formation reductions are still achieved thanks to OME1.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines


    Additional title:

    Sae Technical Papers



    Conference:

    WCX SAE World Congress Experience ; 2023



    Publication date :

    2023-04-11




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Hydrotreated Vegetable Oil as Fuel for Heavy Duty Diesel Engines

    Kuronen, Markku / Aakko, Päivi / Mikkonen, Seppo et al. | SAE Technical Papers | 2007


    Fuel Blends in Compression Ignition Engines

    Asfar, Khaled / Al-Rabadi, Thaer | AIAA | 2003


    Technical Performance of HVO (Hydrotreated Vegetable Oil) in Diesel Engines

    Kuronen, Markku / Hartikka, Tuukka / Kiiski, Ulla | SAE Technical Papers | 2012


    Diesol - an alternative fuel for compression ignition engines

    Cochran, B.J. / Baldwin, J.D. / Daniel, L.R. jun. | Tema Archive | 1981


    HVO, Hydrotreated Vegetable Oil - a premium renewable biofuel for diesel engines

    Mikkonen,S. / Honkanen,M. / Kuronen,M. et al. | Automotive engineering | 2013