Many motor vehicles (fire-fighting cars and trucks, helicopters, airplanes, etc.) are used for conflagration extinguishing purposes. It is clear that their engines aspirate air containing combustion inhibitors, which are used for flame suppression, but until now there is no available information about the influence of this fact on engine performance. This paper presents results of an experimental study on the influence of combustion inhibitors, such as Halon 1301 (CF₃Br) and CO₂, contained in the ambient air, on the performance of compression ignition (CI) and spark ignition (SI) engines. Substantial differences in the response of CI and SI engines to the inhibitor presence in the aspirated air are revealed. Starting from relatively small concentrations of CF₃Br, an increase of the CI engine speed and a simultaneous decrease of the brake specific fuel consumption are observed. The speed rise may attain up to 80% of its initial value. Dramatic deterioration, approximately by a factor of 3, in the efficiency of the SI engine's catalytic converter (CC) is observed after a short-time exposure of the SI engine to the ambient air containing Halon 1301. Chromatographic analysis of exhaust gases during an exposure of the engines to CF₃Br inhibitor shows the presence of harmful substances that are highly corrosive, and dangerous for human health.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Internal Combustion Engine Response to Presence of Combustion Inhibitors in Ambient Air


    Additional title:

    Sae Int. J. Engines


    Contributors:

    Conference:

    SAE 2013 World Congress & Exhibition ; 2013


    Published in:

    Publication date :

    2013-04-08


    Size :

    7 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    INTERNAL COMBUSTION ENGINE

    TAJIRI KAZUYA / TAKANO YUKI / CHO MASAKI et al. | European Patent Office | 2020

    Free access

    Internal combustion engine

    MORI KENSUKE / TAKAHASHI MASAKO / TSUKAGOSHI HIROYUKI | European Patent Office | 2021

    Free access

    INTERNAL COMBUSTION ENGINE

    HIYOSHI RYOSUKE / FURUKAWA TAKAYOSHI / TOKUNO EMI et al. | European Patent Office | 2020

    Free access

    INTERNAL COMBUSTION ENGINE

    WIESINGER PETRA / ROTHKEGEL THOMAS / GUMPESBERGER MICHAEL | European Patent Office | 2018

    Free access

    INTERNAL COMBUSTION ENGINE

    JUKES OLIVER | European Patent Office | 2017

    Free access