In this work, the effects of ozone, hydrogen, carbon monoxide, and exhaust gas recirculation (EGR) addition to Haltermann gasoline combustion were investigated. For these additives, laminar and turbulent flame speeds were experimentally determined using spherically propagating premixed flames in a constant volume combustion vessel. Two initial mixture pressures of Po = 1 and 5 bar, two initial mixture temperatures of 358 and 373 K and a range of equivalence ratios (Ф) from 0.5 to 1 were investigated. The additives were added as single, binary and ternary mixtures to Haltermann gasoline over a wide range of concentrations. For the stoichiometric mixture, the addition of 10% H2, 5% CO and 1000 ppm O3 shows remarkable enhancement (80%) in compared to neat Haltermann gasoline. In addition, for this same blend, increasing the mixture initial temperature and pressure results in a significant increase in compared to the neat gasoline. Thus it can be inferred that ternary additives suppress the reduction effect of pressure on encountered at elevated pressure with neat Haltermann gasoline. With 40% (by mass) addition of synthetic EGR (20% CO2 - 80% N2) to neat Haltermann gasoline, successful propagation of a flame was not attained; however, ternary additives blend improves the kinetics of the combustible mixture and enhances the flame propagation. The presence of a ternary additive limits the reduction of to 33% compared to base fuel (43% reduction), with a 20% EGR addition. The turbulent burning velocity at two turbulence intensities of 0.4 and 1.2 m/s showed that increasing turbulence intensity enhanced the turbulent burning velocity due to increased flame front wrinkling.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Comprehensive Experimental Study to Measure Laminar and Turbulent Burning Velocity of Haltermann Gasoline with Ternary Additives (O3, H2, and CO)


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    SAE WCX Digital Summit ; 2021



    Publication date :

    2021-04-06




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Influence of Laminar Burning Velocity on Performance of Gasoline Engines

    Cracknell, R. / Prakash, A. / Head, R. et al. | British Library Conference Proceedings | 2012


    Influence of Laminar Burning Velocity on Performance of Gasoline Engines

    Prakash, Arjun / Head, Robert / Cracknell, Roger | SAE Technical Papers | 2012


    The influence of methanol additive to gasoline on laminar burning velocity

    Shraga,J. / Moses,E. / Gutmann,M. et al. | Automotive engineering | 1991


    Gasoline Engine Cycle Simulation Using the Leeds Turbulent Burning Velocity Correlations

    Sheppard, C. G. W. / Merdjani, S. | SAE Technical Papers | 1993


    Gasoline engine cycle simulation using the Leeds turbulent burning velocity correlations

    Merdjani,S. / Sheppard,C.G. / Univ.of Leeds,GB | Automotive engineering | 1993