Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension. A reduction in absorbed energy was observed with decreasing temperature and increasing pre-strain, indicating that thermal effects on plasticity, not athermal transformation to martensite, predominantly account for the observed reductions in impact energy at reduced temperatures.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Retained Austenite Stability and Impact Performance of Advanced High Strength Steel at Reduced Temperatures


    Additional title:

    Sae Int. J. Mater. Manf
    Sae International Journal of Materials and Manufacturing


    Contributors:

    Conference:

    WCX™ 17: SAE World Congress Experience ; 2017



    Publication date :

    2017-03-28


    Size :

    7 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Application of high strength steel sheets containing retained austenite to body parts

    Taniguchi, Y. / Ojima, Y. / Niwa, S. et al. | Tema Archive | 1994


    Application of high strength steel sheets containing retained austenite to body parts

    Taniguchi,Y. / Ojima,Y. / Niwa,S. et al. | Automotive engineering | 1994



    Fatigue properties of high strength steels containing retained austenite

    Yokoi,T. / Kawasaki,K. / Takahashi,M. et al. | Automotive engineering | 1996