This investigation concerns the design, build, and testing of direct-measuring skin friction sensors capable of performing in sustained hypersonic flow and detecting transition. A multistep approach tested the sensors through bench-test and wind-tunnel facilities. The sensors underwent National Institute of Standards and Technology traceable calibrations with well-documented uncertainties. The calibration process characterized static, thermal, pressure, and dynamic responses. Validation testing was conducted in a supersonic tunnel at Mach 4.0. The main investigations were conducted in Arnold Engineering Development Complex Tunnel 9. The skin friction sensor was integrated into a steel 155.6-cm-long (61.27 in.-long), 7 deg half-angle cone model. Flow was nominally maintained at Mach 10 and a stagnation temperature of 1250 K (2250°R). The stagnation pressure and unit Reynolds number were varied over 2.3–43.4 MPa (330–6300 psia) and 1.6–30.3×106/m (0.5–9.24×106/ft), respectively. Skin friction was measured over boundary-layer states including early transitional, transitional, and turbulent flows. Wall shear ranged between 0.92 and 340 Pa (0.02 and 7.1 psf), whereas the skin friction coefficients ranged 0.0003–0.0060. The uncertainty of the skin friction sensor remained at ±9.2% of the measurement for a 95% confidence level. The experimental measurements demonstrated favorable agreement with independent analyses including numerical predictions and Reynolds analogy methods.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Direct Skin Friction Measurements at Mach 10 in a Hypervelocity Wind Tunnel




    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.60 Raumfahrttechnik
    Local classification TIB:    770/7040



    Direct Skin Friction Measurements at Mach 10 in a Hypervelocity Wind Tunnel

    Meritt, Ryan J. / Schetz, Joseph A. / Marineau, Eric C. et al. | AIAA | 2017


    Direct Skin Friction Measurements at Mach 14 in AEDC Hypervelocity Wind Tunnel 9

    Meritt, Ryan J. / Schetz, Joseph A. / Marineau, Eric C. et al. | AIAA | 2017


    Direct Measurements of Skin Friction at AEDC Hypervelocity Wind Tunnel 9

    Meritt, Ryan J. / Schetz, Joseph A. / Marineau, Eric C. et al. | AIAA | 2015


    Direct Measurements of Skin Friction at AEDC Hypervelocity Wind Tunnel 9 (AIAA 2015-1914)

    Meritt, Ryan J. / Schetz, Joseph A. / Marineau, Eric C. et al. | British Library Conference Proceedings | 2015


    The NOL Hypervelocity Wind Tunnel

    GLOWACKI, W. / HARRIS, E. / LOBB, R. et al. | AIAA | 1971