The paper treats oscillations of a liquid in partially filled vessel under horizontal harmonic ground excitation. Such excitation may lead to hydraulic impacts. The liquid sloshing mass is modeled by equivalent pendulum, which can impact the vessel walls. We use parameters of the equivalent pendulum for well-explored case of cylindrical vessels. The hydraulic impacts are modeled by high-power potential function. Conditions for internal resonances are presented. A non-resonant behavior and dynamic response related to 3:1 internal resonance are explored. When the excitation amplitude exceeds a critical value, the system exhibits multiple steady state solutions. Quasi-periodic solutions appear in relatively narrow range of parameters. Numerical continuation links between resonant regimes found asymptotically for small excitation amplitude, and high-amplitude responses with intensive impacts.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel


    Contributors:


    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    33.12 Akustik / 50.36 Technische Akustik / 53.79 Elektroakustik, Tonstudiotechnik / 50.32 Dynamik, Schwingungslehre / 58.56 Lärmschutz, Erschütterungsdämpfung
    Local classification TIB:    275/3425