Venus is essential to our understanding of the evolution and habitability of Earth-size planets throughout the galaxy. The selection of the VERITAS, EnVision, and DAVINCI missions by NASA and ESA in June 2021 is an important step in advancing the science. However, addressing many of the most challenging questions will require in situ platforms that can operate in the Venus environment for extended periods in order to capture the full complexity of our sister planet. Aerobots are aerial vehicles that exploit buoyancy to achieve long-duration operation in the Venus cloud layer where environmental conditions are comparatively benign. Buoyancy control, explained in more detail in a companion paper at this conference, allows aerobots to change altitude with little energy expenditure enabling new scientific measurement opportunities. These include atmospheric chemistry, dynamics, geophysical measurements of the crust and interior and geological investigations enabled by high resolution surface imaging. One aspect to our approach to defining missions that fit within the resource constraints of competitive missions is keeping the scale small. Today’s science-driven appetite for sophisticated measurements and large volumes of data is driving size upwards but advances in technology can enable aerobots that can be delivered to Venus at manageable costs. The other aspect is supporting the aerobot at Venus with orbiters providing data relay, localization and synergistic science. The recently selected orbiters, equipped with low-cost proximity relay systems routinely used at Mars may obviate the need for dedicated orbiters thereby enabling Discovery mission candidates. Four aerobot mission concepts have been defined which fit comfortably within the current New Frontiers (NF) cost cap ($900M in $FY22). One of these concepts would also be a candidate for a Discovery mission if that cost cap ($500M in $FY19) were raised. Raising the NF cost cap would enable more capable aerobot missions combining both altitude control with synergistic orbital observations. Investigations of surface geology at high resolution with subcloud NIR nightside imaging and dropsondes on the dayside of Venus could also benefit from collaborations with foreign contributions.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Exploring the Clouds of Venus: Science Driven Aerobot Missions to Our Sister Planet



    Publication date :

    2022-03-05


    Type of media :

    Preprint


    Type of material :

    No indication


    Language :

    English



    Exploring the Clouds of Venus: Science Driven Aerobot Missions to our Sister Planet

    Cutts, James / Baines, Kevin / Dorsky, Leonard et al. | IEEE | 2022


    Venus Aerobot Multisonde Mission

    Cutts, James A. / Kerzhanovich, Viktor / Balaram, J. Bob et al. | NTRS | 1999


    Venus Aerobot Multisonde mission

    Cutts, James / Gershman, Robert / Hall, Jeffery et al. | AIAA | 1999


    Venus Aerobot and Science Operations Concepts

    Byrne, Paul / Baines, Kevin / Cutts, James et al. | NTRS | 2021


    Venus Aerobot Prototype Development

    Turner, Caleb / Elder, Thomas / Lachenmeier, Tim et al. | NTRS | 2021