The development of Vertical Take-off and Landing (VTOL) vehicles for the Urban Air Mobility (UAM) markets presents a need for light weight vehicle structures with effective occupant protection capabilities. The National Aeronautics and Space Administration (NASA) has been working to fill that need, recently developing a cadre of concept vehicles to help characterize UAM design feasibility. This paper describes a study, using these concept vehicles, to evaluate the use of advanced composite structure and energy attenuating designs in the UAM vehicle design space. A finite element model (FEM) of a single passenger quadrotor concept vehicle was developed in LS-Dyna® and simulated under nominal and off-nominal vertical impact conditions. A variety of energy attenuating design mechanisms were implemented within this model to quantify their effectiveness in improving occupant safety. The use of carbon composites in both the energy attenuation mechanisms and vehicle structure was evaluated. The results of this study found significant reduction in occupant injury risk with the implementation of energy absorbing composite crush tubes and landing gear within the vehicle design. Additionally the use of a carbon fiber as a structural material was found to provide significant weight reduction while maintaining similar occupant loads to that predicted with an aluminum structure. This work provides a preliminary evaluation of design mechanisms and materials that may be used to optimize occupant protection capabilities within the UAM market.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Evaluation of Impact Energy Attenuators and Composite Material Designs of a UAM VTOL Concept Vehicle


    Contributors:

    Conference:

    VFS Annual Forum and Technology Display ; 2019 ; Philadelphia, PA, United States


    Publication date :

    2019-05-13


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English





    EVALUATION OF IMPACT ENERGY ATTENUATORS AND COMPOSITE MATERIAL DESIGNS OF A UAM VTOL CONCEPT VEHICLE

    Putnam, Jacob / Littell, Justin | British Library Conference Proceedings | 2019



    Impact Attenuators: A Current Engineering Evaluation

    J. Hinch / D. Sawyer / D. Stout et al. | NTIS | 1986


    Sound Attenuators

    Online Contents | 1998