A number of upcoming missions require different thrust levels on the same spacecraft. A highly scaleable and efficient propulsion system would allow substantial mass savings. One type of thruster that can throttle from high to low thrust while maintaining a high specific impulse is a Micro-Electro-Mechanical System (MEMS) colloidal thruster. The NASA GSFC MEMS colloidal thruster has solved the problem of electrical breakdown to permit the integration of the electrode on top of the emitter by a novel MEMS fabrication technique. Devices have been successfully fabricated and the insulation properties have been tested to show they can support the required electric field. A computational finite element model was created and used to verify the voltage required to successfully operate the thruster. An experimental setup has been prepared to test the devices with both optical and Time-Of-Flight diagnostics.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    NASA GSFC MEMS Colloidal Thruster


    Contributors:

    Publication date :

    2004


    Size :

    9 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English




    The NASA GSFC MEMS Colloidal Thruster

    Cardiff, Eric / Chepko, Ariane / Norgaard, Peter et al. | AIAA | 2004


    The NASA GSFC MEMS Colloidal Thruster

    Cardiff, Eric H. / Jamieson, Brian G. / Norgaard, Peter C. et al. | NTRS | 2004