A free-flight investigation has been made to determine some effects of aerodynamic heating on the structural behavior of a wing at supersonic speeds. The test wing was a thin, unswept, untapered, multispar, aluminum-alloy wing having a 20-inch chord, a 20-inch exposed semispan, and a circular-arc airfoil section with a thickness ratio of 5 percent. The wing was tested on a model propelled by a two-stage rocket-propulsion system to a Mach number of 2.22 and a corresponding Reynolds number per foot of 13,200,000. Reasonably good agreement was obtained between Stanton numbers obtained from measured temperature-time data and values obtained by the theory of Van Driest for flat plates having turbulent boundary layers. Temperature measurements made in the skin of the wing and in the internal structures agreed well with calculated values. The wing was instrumented to detect any apparent fluttering motion in the wing, but no evidence of flutter was observed throughout the flight.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Free-Flight Investigation of a Rocket-Propelled Model to Determine the Aerodynamic Heating on a Thin, Unswept, Untapered, Multispar, Aluminum-Alloy Wing at Mach Numbers up to 2.22


    Contributors:

    Publication date :

    1959


    Size :

    42 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English