Robust and globally-referenced positioning is indispensable for autonomous driving vehicles. Global navigation satellite system (GNSS) is still an irreplaceable sensor. Satisfactory accuracy (about 1 m) can be obtained in sparse areas. However, the GNSS positioning error can be up to 100 m in dense urban areas due to the multipath effects and non-line-of-sight (NLOS) receptions caused by reflection and blockage from buildings. NLOS is currently the dominant factor degrading the performance of GNSS positioning. Recently, the camera has been employed to detect the NLOS and then to exclude the NLOS measurements from GNSS calculation. The exclusion of NLOS measurements can cause severe distortion of satellite distribution, due to the excessive NLOS receptions in deep urban canyons. Correcting the NLOS receptions with the aid of 3D light detection and ranging after detection of NLOS receptions using a fish-eye camera was proposed in this study. Finally, the GNSS positioning was improved by using the healthy and corrected NLOS pseudo-range measurements. The proposed method is evaluated through real road tests in typical highly urbanised canyons of Hong Kong. The evaluation results show that the proposed method can effectively improve the positioning performance.


    Access

    Access via TIB


    Export, share and cite




    3D LiDAR Aided GNSS NLOS Mitigation in Urban Canyons

    Wen, Weisong Weisong / Hsu, Li-Ta | IEEE | 2022



    Continuous GNSS-RTK Aided by LiDAR/Inertial Odometry with Intelligent GNSS Selection in Urban Canyons

    Zhang, Jiachen / Wen, Weisong / Huang, Feng et al. | British Library Conference Proceedings | 2021


    Positioning enhancement through GNSS signal propagation predictions in deep urban canyons

    Godefroy, C. / Sayerse, P. / Leroy, S. et al. | British Library Conference Proceedings | 2005