This paper introduces an energy-efficient, software-defined vehicular edge network for the growing intelligent connected transportation system. A joint user-centric virtual cell formation and resource allocation problem is investigated to bring eco-solutions at the edge. This joint problem aims to combat against the power-hungry edge nodes while maintaining assured reliability and data rate. More specifically, by prioritizing the downlink communication of dynamic eco-routing, highly mobile autonomous vehicles are served with multiple low-powered access points (APs) simultaneously for ubiquitous connectivity and guaranteed reliability of the network. The formulated optimization is exceptionally troublesome to solve within a polynomial time, due to its complicated combinatorial structure. Hence, a distributed multi-agent reinforcement learning (D-MARL) algorithm is proposed for eco-vehicular edges, where multiple agents cooperatively learn to receive the best reward. First, the algorithm segments the centralized action space into multiple smaller groups. Based on the model-free distributed Q learner, each edge agent takes its actions from the respective group. Also, in each learning state, a software-defined controller chooses the global best action from individual bests of the distributed agents. Numerical results validate that our learning solution achieves near-optimal performances within a small number of training episodes as compared with existing baselines.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Eco-Vehicular Edge Networks for Connected Transportation: A Distributed Multi-Agent Reinforcement Learning Approach


    Contributors:


    Publication date :

    2020-11-01


    Size :

    1649985 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Cooperative perception in vehicular networks using multi-agent reinforcement learning

    Abdel-Aziz, M. K. (Mohamed K.) / Samarakoon, S. (Sumudu) / Perfecto, C. (Cristina) et al. | BASE | 2021

    Free access


    Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks

    Cui, Yaping / Shi, Hongji / Wang, Ruyan et al. | IEEE | 2024


    Multi-Agent Deep Reinforcement Learning in Vehicular OCC

    Islam, Amirul / Musavian, Leila / Thomos, Nikolaos | IEEE | 2022