High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow-oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks




    Publication date :

    2018-07-01


    Size :

    2933343 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English







    Intersection Based Routing in Urban VANETs

    Acarman, Tankut / Yaman, Cagdas / Peksen, Yavuz et al. | IEEE | 2015