Taking the advantage of flux modulation effects, consequent-pole permanent magnet (PM) vernier (CPMV) machines have been widely investigated recently, featuring high torque density and PM utilization ratio. However, the low-order harmonics of modulated flux fields additionally cause high iron saturation, which results in relatively low average torque under overload conditions, especially for the CPMV machines with an interior CPM (ICPM) rotor. Therefore, this article proposes two hybrid CPM (HCPM) rotors of PMV machines to improve the overload performance by adding SPMs into the conventional ICPM rotor. First, the topologies of the proposed HCPM rotors are presented, named HCPM1 and HCPM2 rotors, respectively. Then, the HCPM rotors and a conventional ICPM rotor with the V-shaped PM arrangement are designed and optimized to find out the optimal design parameters. Moreover, the electromagnetic performances including back EMF, torque performance, efficiency, flux-weakening capability, and end effect are comprehensively investigated and compared. It indicates that the two proposed HCPM rotors both can generate equivalently high average torque, efficiency, and flux-weakening capability, compared to the conventional ICPM rotor. Furthermore, the proposed HCPM2 rotor can produce $\ge 22.9$ % higher torque at overload conditions. In addition, due to the bipolar PM arrangement, the unipolar flux leakage of the HCPM2 rotor is significantly reduced and lower than 0.05 T. Finally, the prototype of a 12-stator-slot/20-rotor-pole CPMV machine with the HCPM2 rotor is manufactured to validate the finite-element (FE) results.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Comparative Analysis of Consequent-Pole PM Vernier Machines With Different Rotor Types


    Contributors:
    Chen, Hong (author) / Zhu, Zhe (author) / Zhang, Zongsheng (author) / Wang, Hao (author)


    Publication date :

    2024-03-01


    Size :

    3613415 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English