Abstract This article describes the electromagnetic analysis of high efficient hybrid motor, which comprises the salient features of switched reluctance motor (SRM) and spoke‐type brushless DC motor. The main objective is to develop a motor with a high‐power density and winding faulty capability. Furthermore, this research article extends in the manner to increase the power density of the motor through the sensitivity analysis on rotor geometry by replacing the rotating part of SRM and adopting the rotor of spoke type brushless DC motor, originating the hybrid motor with the high‐power density and enhanced efficiency. To ensure the winding fault capability, a SRM‐based stator winding is adopted. Then, the modelling process for hybrid motor 48 V, 1500 RPM, 2 kW, and 12.7 Nm are detail in both analytical and finite element methods. The electromagnetic analysis is carried out to estimate the torque characteristics and flux pattern of the proposed motor. Furthermore, the proposed motor is analysed with the selection of laminating core material among M 27 24 Ga, 36F155, 46F165, 47F165, M 420 50D, and arnon 7. This infers 36F155 material assists proposed motor has high‐performance characteristics. The vibration frequencies are investigated in modal aspects to estimate the natural frequencies of vibrations. These analyses are validated among analytical and finite element results under no‐load conditions.


    Access

    Download


    Export, share and cite



    Title :

    Analysis of isolated phase windings and permanent magnet assists high energy efficient hybrid‐reluctance motor for electric vehicle




    Publication date :

    2023




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    ROTOR STRUCTURE, PERMANENT MAGNET AUXILIARY SYNCHRONOUS RELUCTANCE MOTOR, AND ELECTRIC VEHICLE

    HU YUSHENG / TONG TONG / LU SUHUA et al. | European Patent Office | 2021

    Free access

    Rotor structure, permanent magnet auxiliary synchronous reluctance motor, and electric vehicle

    HU YUSHENG / CHEN BIN / XIAO YONG et al. | European Patent Office | 2023

    Free access

    Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle

    HUANG HUI / HU YUSHENG / CHEN BIN et al. | European Patent Office | 2023

    Free access

    Rotor structure, permanent magnet auxiliary synchronous reluctance motor, and electric vehicle

    HU YUSHENG / TONG TONG / LU SUHUA et al. | European Patent Office | 2023

    Free access

    Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric vehicle

    XIAO YONG / HU YUSHENG / CHEN BIN et al. | European Patent Office | 2023

    Free access