Autonomous robots need to be recharged and exchange information with the host through docking in the long-distance tasks. Therefore, feasible path is required in the docking process to guide the robot and adjust its pose. However, when there are unknown obstacles in the work area, it becomes difficult to determine the feasible path for docking. This paper presents a reactive path planning approach named Dubins-APF (DAPF) to solve the path planning problem for docking in unknown environment with obstacles. In this proposed approach the Dubins curves are combined with the designed obstacle avoidance potential field to plan the feasible path. Firstly, an initial path is planned and followed according to the configurations of the robot and the docking station. Then when the followed path is evaluated to be infeasible, the intermediate configuration is calculated as well as the replanned path based on the obstacle avoidance potential field. The robot will be navigated to the docking station with proper pose eventually via the DAPF approach. The proposed DAPF approach is efficient and does not require the prior knowledge about the environment. Simulation results are given to validate the effectiveness and feasibility of the proposed approach.


    Access

    Download


    Export, share and cite



    Title :

    Reactive Path Planning Approach for Docking Robots in Unknown Environment


    Contributors:
    Peng Cui (author) / Weisheng Yan (author) / Yintao Wang (author)


    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Path planning approach in unknown environment

    Wang, T. K. / Dang, Q. / Pan, P. Y. | British Library Online Contents | 2010


    A Q-Learning Strategy for Path Planning of Robots in Unknown Terrains

    Mohanty, Prases K. / Saurabh, Suman / Yadav, Shivam et al. | IEEE | 2022



    Space D*: a path-planning algorithm for multiple robots in unknown environments

    Silveira, Luan / Maffei, Renan de Queiroz / Botelho, Silvia Silva da Costa et al. | BASE | 2012

    Free access

    Search and Rescue Robot Path Planning in Unknown Environment

    Pang, Tao ;Ruan, Xiao Gang ;Wang, Er Shen | Trans Tech Publications | 2012