Measuring carbon emissions is an essential step in taking required action to fight global warming. This research presents a computational method for measuring transport related carbon emissions in a healthcare supply network. The network configuration significantly impacts carbon emissions. First, a multi-objective mathematical programing model is developed for designing a healthcare supply network in the form of a two-graph location routing problem under demand and fuel consumption uncertainty. Objective functions are minimizing total cost and minimizing total fuel consumption. In the presented model, the demand of each customer must be completely satisfied in each time period, and backlog is not permitted. The number and capacity of vehicles are determined, and vehicles are heterogeneous. Furthermore, fuel consumption depends on traveling distance, vehicle and road conditions, and the load of a vehicle. The centroid method is applied to face demand uncertainty. Next, a multi-objective non-dominated ranked genetic algorithm (M-NRGA) is proposed to solve the model. Then, a Monte Carlo based approach is presented for measuring  transport-related carbon emissions based on fuel consumption in supply network. Finally, the proposed approach is applied to the case of a healthcare supply network in the Fars province in Iran. The obtained results illustrate that the proposed approach is a practical tool in designing healthcare supply networks and measuring transport-related carbon emissions in the network.


    Access

    Download


    Export, share and cite



    Title :

    A Computational Method for Measuring Transport Related Carbon Emissions in a Healthcare Supply Network under Mixed Uncertainty: An Empirical Study


    Contributors:


    Publication date :

    2018




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown