This article proposes a comparative method to assess the performance of artificial neural network’s direct inverse control (DIC-ANN) with the PID control system. The comparison served as an analysis tool to assess the advantages of DIC-ANN over conventional control method for a UAV attitude controller. The development of ANN method for UAV control purposes arises due to the limitations of the conventional control method, which is the mathematical based model, involving complex expression, and most of them are difficult to be solved directly into analytic solution. Although the linearization simplified the solving process for such mathematical based model, omitting the nonlinear and the coupling terms is unsuitable for the dynamics of the multirotor vehicle. Thus, the DIC-ANN perform learning mechanism to overcome the limitation of PID tuning. Therefore, the proposed comparative method is developed to obtain conclusive results of DIC-ANN advantages over the linear method in UAV attitude control. Better achievement in the altitude dynamics was attained by the DIC-ANN compared to PID control method.


    Access

    Download


    Export, share and cite



    Title :

    Neural Network Control System of UAV Altitude Dynamics and Its Comparison with the PID Control System


    Contributors:


    Publication date :

    2018




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    ALTITUDE CONTROL SYSTEM

    ANDERSON KEVIN / NUTZMANN JONATHAN / CROMIE JOHN et al. | European Patent Office | 2020

    Free access

    ALTITUDE CONTROL SYSTEM

    ANDERSON KEVIN / NUTZMANN JONATHAN / CROMIE JOHN et al. | European Patent Office | 2019

    Free access

    ALTITUDE CONTROL SYSTEM

    ANDERSON KEVIN / NUTZMANN JONATHAN / CROMIE JOHN et al. | European Patent Office | 2023

    Free access

    Altitude control system

    ANDERSON KEVIN / NUTZMANN JONATHAN / CROMIE JOHN et al. | European Patent Office | 2023

    Free access

    BALLOON ALTITUDE CONTROL SYSTEM

    MATTHEWS TAYLOR EVAN / FRY ANTHONY PAUL / LAVIGNE JESSICA MARIE et al. | European Patent Office | 2018

    Free access