DC microgrids built through a bottom-up approach are becoming popular for swarm electrification due to their scalability and resource-sharing capabilities. However, they typically require sophisticated control techniques involving communication among the distributed resources for stable and coordinated operation. In this work, we present a communication-less strategy for the decentralized control of a photovoltaic (PV)/battery-based highly distributed dc microgrid. The architecture consists of clusters of nanogrids (households), where each nanogrid can work independently along with provisions of sharing resources with the community. An adaptive I-V droop method is used, which relies on local measurements of state of charge and dc bus voltage for the coordinated power sharing among the contributing nanogrids. PV generation capability of individual nanogrids is synchronized with the grid stability conditions through a local controller, which may shift its modes of operation between maximum power point tracking mode and current control mode. The distributed architecture with the proposed decentralized control scheme enables 1) scalability and modularity in the structure, 2) higher distribution efficiency, and 3) communication-less, yet coordinated resource sharing. The efficacy of the proposed control scheme is validated for various possible power-sharing scenarios using simulations on MATLAB/Simulink and hardware-in-the-loop facilities at the Microgrid Laboratory, Aalborg University.


    Access

    Download


    Export, share and cite



    Title :

    A Decentralized Control Architecture applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions


    Contributors:

    Publication date :

    2019-02-01


    Remarks:

    Nasir , M , Jin , Z , Khan , H , Zaffar , N , Vasquez , J & Guerrero , J M 2019 , ' A Decentralized Control Architecture applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions ' , IEEE Transactions on Power Electronics , vol. 34 , no. 2 , 8341807 , pp. 1773-1785 . https://doi.org/10.1109/TPEL.2018.2828538



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    600 / 629



    LOW-COST, SOLAR-POWERED NANOGRID

    GINSBERG-KLEMMT ANTONIA / GINSBERG-KLEMMT ACHIM / CUMMINGS ERIC BRYANT | European Patent Office | 2023

    Free access

    NANOGRID DEVICE FOR OFF-GRID POWER

    FLANAGAN LAUREN A / KASEFANG ADAM M / JINDAL SAKSHI et al. | European Patent Office | 2023

    Free access

    Photovoltaic Rural Electrification

    Lorenzo, E. | Online Contents | 1997


    NANOGRID DEVICE FOR OFF-GRID POWER

    FLANAGAN LAUREN A / KASEFANG ADAM M / JINDAL SAKSHI et al. | European Patent Office | 2023

    Free access