Parallel connection of converters is a convenient choice when system capacity is to be increased. Parallel-connected voltage source converters, especially neutral point clamped converters, are one of the best choices for its range. However, with the parallel connectivity, the converter possesses a circulating current in its legs, which consequently threatens the safe operation of the system. To alleviate this circulating current problem, in this paper, a double deadbeat (DD) plus repetitive control (RC) scheme is proposed. The RC scheme is employed to mitigate the circulating currents and the DD loop control scheme is employed to achieve a high operating bandwidth for voltage and current characteristics. Furthermore, the DD loop is associated with an adaptive controlling technique, which adjusts internally by itself and provides better performance for nonlinear loads. The proposed DD method forces the equivalent system elements to be placed outside the closed loop, which does not affect the system stability. Initially, the system has been executed with a conventional proportional + integral scheme and then with the proposed DD + RC scheme. The proposed method is verified by implementing a Simulink model in the OPAL-RT platform. Furthermore, the proposed method is built with a prototype, and its results are explored.


    Access

    Download


    Export, share and cite



    Title :

    Double Deadbeat Plus Repetitive Control Scheme for Microgrid System


    Contributors:
    Madichetty, S. (author) / Basu, M. (author) / Mishra, S. (author) / Guerrero, J. M. (author)

    Publication date :

    2019-09-01


    Remarks:

    Madichetty , S , Basu , M , Mishra , S & Guerrero , J M 2019 , ' Double Deadbeat Plus Repetitive Control Scheme for Microgrid System ' , IEEE Systems Journal , vol. 13 , no. 3 , 8506412 , pp. 3194 - 3202 . https://doi.org/10.1109/JSYST.2018.2875543



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Ripple-Free Deadbeat Control

    Zak, S. H. / Blouin, E. E. | British Library Online Contents | 1993


    Deadbeat Control of Continuous Time H~ Control System

    Tsumura, K. / Morita, H. / Saito, Y. | British Library Online Contents | 1998


    Deadbeat Control for PWM AC Chopper

    Rahmani, L. | Online Contents | 2004


    Recursive Deadbeat Controller Design

    Jer-Nan Juang / Minh Q. Phan | AIAA | 1998


    Deadbeat State Space Control of Spinning Satellite

    M. Elarbi, Ezzeddin / Issa, Saad Mehemed | BASE | 2015

    Free access