A compliant mechanism gains its mobility fully or partially from the compliance of its elastically deformable parts rather than from conventional joints. Due to many advantages, in particular the smooth and repeatable motion, monolithic mechanisms with notch flexure hinges are state of the art in numerous precision engineering applications with required positioning accuracies in the low micrometer range. However, the deformation and especially motion behavior are complex and depend on the notch geometry. This complicates both the accurate modeling and purposeful design. Therefore, the chapter provides a survey of different methods for the general and simplified modeling of the elasto-kinematic properties of flexure hinges and compliant mechanisms for four hinge contours. Based on non-linear analytical calculations and FEM simulations, several guidelines like design graphs, design equations, design tools or a geometric scaling approach are presented. The obtained results are analytically and simulatively verified and show a good correlation. Using the example of a path-generating mechanism, it will be demonstrated that the suggested angle-based method for synthesizing a compliant mechanism with individually shaped hinges can be used to design high-precise and large-stroke compliant mechanisms. The approaches can be used for the accelerated synthesis of planar and spatial flexure hinge-based compliant mechanisms.


    Access

    Download


    Export, share and cite



    Title :

    Modeling and design of flexure hinge-based compliant mechanisms


    Contributors:

    Publication date :

    2019-04-03



    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    620 / 629